Nucleation of Crystals in Solution

Peter G. Vekilov

Department of Chemical and Biomolecular Engineering,
Department of Chemistry, University of Houston

NIH, NASA, NSF, The Welch Foundation
KDP

~ 20 cm crystal grows in ~ 1 day

"FAST GROWTH Method Sets Crystal Size Record,"
LASER FOCUS WORLD, July 1999 Cover
Crystal from LLNL
Ferritin

~ 700 μm crystal grows in ~ 1 month
Mass Crystallization

- **Insulin as medication**
 - In 2003, the worldwide insulin market
 - $4.3 billion
 - projected to grow to $7.1 billion by 2010
 - Other crystalline pharmaceuticals
 - acetaminophen, ..., interferon, ...
 - **Insulin** crystallization in pancreas
 - 7% of all humans with diabetes in 2030

- **Products and intermediates in chemical industry**
 - adipic acid for nylon produced in Texas
 - 5,500,000 tons / year worldwide
 - shipped to new jersey for nylon production
Insulin Biosynthesis

- Single crystal per vesicle
- Fast crystal growth
- Ready response to fluctuations in conversion rate
- Crystals exclude proinsulin present in islet cells
- Slow dissolution at undersaturation
Crystals of Hemoglobin C in Red Blood Cells

Erythrocytes from HbC Transgenic Mice

- crystallization induced by 4 hour incubation in 3% NaCl, 37°C
- crystal dissolution induced by addition of 0.09 M NaCl solution

5 s original = 0.1 s as played

The Goal: Crystals with “Just-right”…

- Number
- Polymorph
- Morphology
- Habit
- Size
- Size distribution

Requires data on:
- Solution PChem
 - Phase diagrams
 - Metastable states
- Nucleation mechanisms
- Growth mechanisms
- Agglomeration
- …
Only God and Gibbs never erred
... and this has been strictly shown for Gibbs only

E.D. Shchukin
Crystallization and Nucleation

Crystallization

Nucleation

...
Classical Nucleation Theory: Thermodynamics

Solution—supersaturated: $\mu_{\text{soln}} > \mu_{\text{crystal}}$, $\Delta \mu = \mu_{\text{soln}} - \mu_{\text{crystal}} > 0$

Free energy gain $= -n\Delta \mu$

Free energy loss $= 6\gamma n^{2/3}$

Creation of new surface

$\Delta G(n) = -n\Delta \mu + 6\gamma n^{2/3}$

$\Delta G^* = \frac{32\gamma^3}{\Delta \mu^2} = \frac{1}{2} n^* \Delta \mu$

$6\gamma n^{2/3}$

ΔG^*

$\Delta G(n)$

n^*

n

$-n\Delta \mu$
Classical Nucleation Theory: Kinetics

\[J = A C \exp \left(-\frac{\Delta G^*}{k_B T} \right) \]

Volmer M (1939)
Kinetik der Phasenbildung (Steinkopff, Dresden)

Assumes that clusters are perfect crystals

Predicts steep \(I(C, \Delta \mu(C)) \)
The Nucleation Rate

Galkin, O.
Vekilov, P. G.
PNAS 97, 6277 (2000)

Maximum in J(T)

- Exponential increase at intermediate ΔT's; by weak decrease at higher ΔT's
- T of maximum shifts with concentration
Crystallization as Sequential Transition along Two Order Parameters

- Classical viewpoint: direct nucleation along a “diagonal line” envisioned;

- Two-step mechanism: suggested by t W & F, T & O for critical point for L-L phase separation for proteins

- Everywhere else in phase diagram—classical crystal nucleation predicted

The Two-step Mechanism

- It operates in all areas of the phase diagram
- It may apply to all crystals (and other ordered solids) forming in solution

Two steps: Which One is Rate Determining

Rate of cluster formation
\[J_1 \sim J_{01} \exp(-\Delta G_1^*/k_B T) \]

Rate of nucleation within clusters
\[J_2 \sim J_{02} \exp(-\Delta G_2^*/k_B T) \]

- Is \(\Delta G_1^* > \Delta G_2^* \) ?
- Is \(J_{01} \) more important than \(\Delta G_1^* \) ?
- Is \(J_{02} \) more important than \(\Delta G_2^* \) ?
Nucleation of Dense Liquid Droplets

$T - T_{LL} = 0.7 \, ^{\circ}C$

3.53 s | 6.09 s | 10.58 s

$T - T_{LL} = 1.3 \, ^{\circ}C$

0.96 s | 1.92 s | 7.37 s

- Number of droplets increases with time
- Faster nucleation at higher ΔT's

→ Characteristics of nucleation regime of droplet generation
Nucleation Rate of Dense Phase Droplets

- Number of droplets increases in time—nucleation regime
- Nucleation rate ~10^9 cm^{-3}s^{-1} significantly higher than rates of crystal nucleation ~ 0.1 – 1 cm^{-3}s^{-1}

Structuring of dense liquid quasi-droplet is the rate determining stage

Equilibrium between solution and clusters: \(\mu_{\text{solution}} = \mu_{\text{clusters}} \)

\[\Delta \mu(\text{solution,crystal}) = \Delta \mu(\text{clusters,crystal}) \]
Why is the maximum in $J(T)$ sharp?

- Spinodal – boundary between metastable and unstable two-phase areas

Other proteins:
- Ferritin crystals grown at $\sigma = 4.2$, where $n^* \approx 1$
- Are protein crystals always grown in spinodal regimes?

Spinodal can be defined from $n^* \to 1$

Pre-exponential Factors and Barriers for Structuring

Liquidus or solubility of crystals
Gelation line
Solution-crystal spinodal
L-L coexistence
L-L spinodal

Why is the maximum in $J(T)$ sharp?

- $J(T)$ reaches sharp max at solution-crystal spinodal.

![Graph showing temperature vs. concentration with various coexistence lines and points.](image)
Heterogeneous Nucleation

Contradiction between
molecular level-viewpoint — templating
mesososcopic level viewpoint — wetting “angle”, decrease of free energy barrier

\[\Delta G^*_{\text{hetero}} = \Delta G^*_{\text{homo}} \times F(\alpha) \]

- Rate of heterogeneous nucleation
 - linear function of $\Delta \mu$
 - no peculiarity at ΔG^*_2 jumps with n^*
- N_{hetero} – not a function of ΔG^*_2
 - ΔG^*_2 is insignificant
- Heterogeneous centers enhance growth of structured clusters

Polymorph Selection and Substrates

- Barriers for structuring—insignificant
- Substrates accelerate growth rate of structured clusters
- Different substrates—enhance formation of different polymorphs
 — structural similarity; — enhanced intermediate; — catalyzed bonds

The Two-step Mechanism for Other Crystals

- **Glycine, urea**

- **Charged colloid crystals**

- **NaClO₃**

- **NaCl nucleation from solution (MD simulation)**

- **Calcite nucleation**
Theoretical Justification of Generality of 2step Mechanism

For protein molecules

\[\Delta G/kT = \begin{cases} a & k_B T = 0.30e \\ b & k_B T = 0.40e \\ c & k_B T = 0.50e \end{cases} \]

For small molecules

\[\Delta G/kT = \begin{cases} d & k_B T = 0.50e \\ e & k_B T = 0.60e \\ f & k_B T = 0.70e \end{cases} \]

Two-step barrier always lower than direct barrier
Clusters and HbS Polymer Nucleation

- $\theta(T)$ much stronger than $R(T)$
contradicts 1-step nucleation and agrees with 2-step
D. Kashchiev, et al.,

- Polymers are perpendicular to plane of polarization of polarized light

- Dependencies of r, V_l and N_l of mesoscopic metastable clusters
on C and T
follow those of nucleated polymers

⇒ Clusters are precursors for polymer nuclei

Aggregation Precedes Ordering in Biological Self-assembly

- Hemoglobin assembly—from 2 α-chains, 2 β-chains and 4 heme-moieties after translocation
 α- and β-chains associate prior to folding

 Hemes attach to α₂β₂ complex and then enter assigned slots

- Nucleation of prion-protein fibers—via a disordered toxic fluid-like cluster

Summary and Conclusions

- A spinodal for the solution-to-crystal phase transition exists
 - The nucleation barrier in the vicinity of the spinodal is negligible
 - The nucleation rate reaches saturation or a maximum at the spinodal

- Assembly of ordered arrays
 - crystals, oligomers, fibers, etc.
 - is preceded by association into disordered clusters

- The precursor is a metastable mesoscopic liquid cluster
- Rate of crystal nucleation is determined by structuring of dense quasi-droplet
- Polymorph selection is determined by kinetics factors rather than by high barriers

- The low volume fraction of the nucleation precursors delays nucleation by $\sim 10^{10}$

- Understanding and control of nucleation in solution requires insights into the solution physicochemical mechanism nano- and mesostuctures
So What?

- Clusters are needed for nucleation of crystals.
 To enhance clusters:
 - moderate intermolecular attraction or repulsion
 - proper water structure around the protein molecules
- Crystal nucleation occurs in a spinodal regime
 - γ is not important
- Simpler picture of nucleation and role of additives
- Heterogeneous particles may affect polymorph selection via structural similarity